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Fig. 1. Generalized Inertial Proximal Deblurring. We provide a 3D surface plot of a given Point Spread Function (PSF) along with a color-coded
visualization of the PSF profile (top-left corner). We show a close-up view of the chameleon’s head for the reference image and the blurred image with the
corresponding given PSF (bottom-left corner). Then, we display a side-by-side comparison of the chameleon image deblurred by Forward-Backward [Combettes
and Wajs 2005; Liu et al. 2012], Douglas-Rachford [Douglas and Rachford 1956], Viscosity [Imnang 2013; Kitkuan et al. 2019], Richardson [Richardson 1910]
and our solver (middle). Finally, we plot the evolution of the convergence rate of our solver along 20000 iterations against this baseline (right).

Visual signal deblurring is a challenging computational problem involv-

ing spatially invariant point spread functions, large blurring matrices and

deconvolution. We formulate the visual content restoration process as an in-

verse convex minimization problem. We design a novel iterative multi-steps

scheme incorporating an inertial term to approximate an element of the set

of solutions of accretive inclusion problems. We generalize our solver for

a large variety of inverse problems in imaging such as convex minimiza-

tion, variational inequality and split feasibility problems. We compare the

convergence rate and perceptual quality assessment with state-of-the-art

algorithms on various visual input data. We demonstrate the effectiveness

of our solver to deblur RGB images, HDR images, height fields, geometry

images as well as motion caption data.
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1 RELATED WORK
Computational Deblurring. Wang et al. [Wang and Tao 2014] for

an overview of recent progress in image deblurring. Applications

related to visual blur covers understanding, modeling, removing

or synthesizing blur. A significant difficulty is to identify the con-

tribution of the defocus blur component [Mosleh et al. 2015] and

the motion blur component [Jin et al. 2019] into the perceived blur.

Late-breaking works in dynamic scene deblurring using spatially

variant recurrent neural networks [Nah et al. 2019]. Blind image
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deblurring restores images without explicitly prior knowledge of

the blur function [Chen et al. 2019]. Blind deconvolution requires

the estimation of unknown PSF parameters [Li 2019] and have been

extended to visual motif [Hertz et al. 2019]. For blind deblurring, we

extend the sub-pixel technique of Delbracio et al. [Delbracio et al.

2012] to estimate a PSF from a single image.

Iterative Deconvolution Optimization. Least-Squaresmethods have

been practical numerical solutions in Computer Graphics [Pighin

and Lewis 2007]. We notice a long-standing interest in linear least-

squares methods for image deblurring since the pioneering work of

Helstrom [Helstrom 1967] and they remain attractive approaches

well-studied in recent research [Jose et al. 2017]. Generally, no exact

and unique solution may exist due to the numerical noise related to

inverse problems. The estimated solution is obtained by converg-

ing toward the unknown solution using a collection of iterations

steps. However, existing iterative methods can only provide an ap-

proximated deblurred images [Nagy et al. 2004]. Given a stopping

criterion., the key challenge is to design an iterative scheme leading

to an optimal set of parameters with a low-residual error and a high

converging rate. Efficient image optimization includes proximal

algorithms [Heide et al. 2016].

Iterative Approximation Schemes. Image restoration is a practical

discrete inverse problem [Hansen 2010] for which computational

methods [Vogel 2002] and regularization [Engl et al. 2000] exists.

Image deblurring admits least-squares solutions [Stanimirovic et al.

2015]. For large-scale systems, numerical solutions are obtained via

an iterative scheme generating a sequence of improving approxi-

mate solutions converging toward a global minimizer starting from

an initial guess. Several works have studied weak and strong conver-

gence criteria [Suantai 2005], rate of convergence [Phuengrattana

and Suantai 2011] and convergence acceleration [Polyak 1964] of
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Fig. 2. Modeling the deblurring process. Spread Function (PSF). We show the Toeplitz matrix generated from the given PSF (a). The blurring matrix is
a block Toeplitz matrix with Toeplitz blocks. Then, the blurring matrix 𝐴 is block-based and each block corresponds to the Toeplitz matrix associated at
a given entry of the blurring matrix (b). Next, we construct a linear least-squares system as follows: the left-hand side of the system stores the blurring
matrix (b) and the right-hand side (d) is then flattened and column-wise blurred image (b). The estimated deblurred solution is the unknown (c). For the sake
of simplicity, we did not show the Laplacian that could be stacked right under the left-hand side of the system. There are several choices for blurring matrix
pattern, whatever is zero or periodic boundary condition. Finally, we display the color-coded matrix sparsity pattern of the periodic and zero blurring matrices
for several sizes of an input image (f).

new iterative approximation schemes. Our proposed iterative meth-

ods are inspired by the work of Kitkuan et al. [Kitkuan et al. 2019]

in which algorithms for zeros of two accretive operators are used

to solve convex minimization problems in image restoration. In

our work, we relax the fixed-point problem using iterative least-

squares methods. Fixed-point theorems are generally proven in the

Hilbert spaces [Takahashi 2010] or the Banach spaces [Browder

1965], but we restrict the proof of convergence and the resulting

algorithm in the Euclidean space in which the image restoration

problem lies. The viscosity iterative method [Imnang 2013], the

Douglas method [Douglas and Rachford 1956] and the Richardson

method [Richardson 1910] are competitive methods to our solver.

Proximal and Splitting Methods. Proximal splitting methods have

been extensively used in signal processing [Combettes and Pesquet

2011] to improve robustness to numerical noise or image denois-

ing [Heide et al. 2016]. Rockafellar [Rockafellar 1976] introduced a

class of algorithms called proximal algorithms using the proximal

operators of the objective terms to solve non-smooth, constrained,

large-scale convex optimization problems. We refer the reader to

the work of Parikh et al. [Parikh and Boyd 2014] for a compre-

hensive overview of proximal algorithms. Proximal gradient meth-

ods are forward-backward splitting methods used to solve possibly

non-differentiable optimization problems [Tseng 2000]. Forward-

backward splitting methods are generalized in Banach spaces by

Cholamjiak [Cholamjiak 2016]. Inertial accelerated algorithms have

been developed to accelerate the convergence rate [Dang et al.

2017]. The inertial term can be injected into the forward-backward

method [Lorenz and Pock 2015], proximal method [Alvarez and

Attouch 2001] and the splitting proximal method [Moudafi and

Oliny 2003]. Finally, the split feasibility problem (SFP) captures a

wide range of inverse problems. We combine the proximal, forward-

backward, and inertial principles to outperform classical methods.

Image Quality Assessment. Image quality assessment [Lavoué and

Mantiuk 2015] requires metrics for measuring or predicting the

perceptual difference between two images [Wolski et al. 2018]. A

large collection of image quality assessment have been developed

from error visibility to local/structural similarity [Wang et al. 2004].

For instance, Wang et al. [Wang and Bovik 2002] has designed a

universal image quality index (UIQ) modeling image distortion by

mixing three quantities: loss of correlation, luminance distortion,

and contrast distortion. Also, Xue et al. [Xue et al. 2014] proposed
a perceptual image quality Index based on gradient magnitude sim-

ilarity deviation. Specific visual metrics have also been proposed

to assess dynamic range image quality [Aydin et al. 2008]. For in-

stance, the HDR-VDP-2 method [Mantiuk et al. 2011] is one of those

metrics in the dynamic range space. Moreover, weaknesses of ex-

isting image quality metrics in evaluating graphics artifacts are

known [Cadik et al. 2012]. In the configuration in which no ground

truth available, it is even more critical to assess image quality and

thus, a no-reference metric is preferred for evaluating the quality

of deblurring [Liu et al. 2013]. Recently, deep learning has been an

interesting alternative for blind image quality assessment [Bianco

et al. 2018].

2 DEBLURRING PROBLEM AND NUMERICAL
SOLUTION

In this section, we provide technical background work related to

the problem of blur modeling and image restoration as well as its

optimization formulation with iterative numerical scheme.

Linear Blur Model. The Fredholm integral equation of the first

kind which arises from many image or signal restoration problems

is formulated as follows:∫ 𝑏

𝑎

𝜅 (𝑠, 𝑡) 𝑥 (𝑡) 𝑑𝑡 = ℎ (𝑠) (1)

where 𝜅 (𝑠, 𝑡) is integral kernel. The blurred function ℎ (𝑠) is ob-
tained by the known 𝜅 (𝑠, 𝑡) and the true function 𝑥 (𝑡). We can

derive a linear system by discretizing the integral Equation (1). Spa-

tially variant image blur is modeled as the convolution of latent

sharp image with a shift-invariant kernel plus noise 𝜂, which is

typically considered to be additive white Gaussian noise. The degra-

dation that we aim to recover form is modeled by:

ℎ =K ⊗ 𝑥 + 𝜂

with the original image 𝑥 , the blurry degraded image ℎ, a blur kernel

𝑘 ∈ R𝑙 , the additive white Gaussian noise 𝜂 with unknown standard

deviation and K the PSF of the blurring operator. We denote by ⊗
the correlation operator of convolution.
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Fig. 3. Effects of Spatial PSF.We demonstrate the robustness of our solver
under the various amount of blurriness. We display the reference image of
the bubble light (a). We show the blurring/deblurring effect of our solver
for different typical blur distribution patterns: linear motion blur (b), shake
motion blur (c), circular motion blur (d), non-linear motion blur (e), glare
for a 6-blade iris (f) with corresponding intensity distribution. These PSFs
are empirical point spread function and have ideal symmetrical shapes,
expressing the amount of blurring as determined by the wavelengths of
light. The intensity distribution of PSFs are shown as 3D surface plots and
color-coded profiles.

Image Restoration Problem. Generally, the deblurring problem is

represented as a convex minimization problem. In particular, the

idea is to solve the iterative deconvolution minimizing the following

estimation error:

arg min

I

(
∥B − (I ⊗ K + 𝜂)∥2

2
+ 𝜆 ∥∇I∥2

2

)
withK the PSF of the blurring operator, 𝜂 the additive white Gauss-

ian noise with unknown standard deviation, ⊗ the correlation op-

erator of convolution and 𝜆 = 𝑒−3
. We denote by B ∈ R𝑤×ℎ×𝑑 the

observed image of size 𝑁 =𝑤 ×ℎ pixels and 𝑑 the dimension of the

color space. We relate the given blurred image B to the unknown

sharp image I ∈ R𝑤×ℎ×𝑑 with 𝑑 channels by B = I ⊗K +𝜂 where
B is defined as the ground truth image I blurred by a PSF K plus

inevitable image noise distribution 𝜂 =N
(
0, 𝜎2

)
. The operator ∥·∥

2

is ℓ2-norm.

Least-Squares Form. Given the stacked vector 𝒄 from blurred im-

age, and the blurring𝑾 , the goal is to find an approximation of the

stacked vector 𝒙 of true image. We model the blurring of images

as a linear process (see Figure 2). In our work, we cast the image

restoration problem as a general unconstrained linear system such

that:

∥𝑨𝒙 − 𝒃 ∥2
2

= ∥𝑾𝒙 − 𝒄 ∥2
2
+ 𝜆 ∥∇𝒙 ∥2

2

⇒ min

𝒙∈R

[𝑾𝜆𝑳] 𝒙 − [
𝒄
0

]2

where 𝒙 ∈ R𝑁 is a column vector stacking the columns of the

unknown original noise-free image I and a scalar 𝜆 > 0. Also, the

stacked vector 𝒄 ∈ R𝑁 is a column vector stacking the columns

of the observed blurring image.𝑾 ∈ R𝑁×𝑁 is the blurring matrix.

Here, the discrete Laplacian 𝑳 operator is an optional regularization

term and can be seen as a PSF.

Toeplitz Blurring Matrix. The blurring matrix is bounded linear

operator defined from point spread function. The blurring matrix

𝑾 ∈ R𝑛𝑚×𝑛𝑚 with 𝑛 is the number of rows in the image and𝑚 is

the number of column in the image. The matrix𝑾 is very large and

sparse matrix and composed of𝑚×𝑚 sub-blocks. In 2D, the blurring

matrix is a two-level Toeplitz matrix, namely a block Toeplitz matrix

with Toeplitz blocks. Each sub-block of𝑾 is typically of size 𝑛 × 𝑛
and consists in a Toeplitz matrix. Using periodic boundary condition,

the Toeplitz sub-block starting at the top-left corner (𝑘, 𝑙) entry of

𝑾 is denoted by𝑾𝑘𝑙 ∈ R𝑛×𝑛 and defined by:[
𝑾𝑘,𝑙

]
𝑝,𝑞

=K [(𝑝 − 𝑞) mod 𝑛 , (𝑘 − 𝑙) mod 𝑚] .

Splitting Method. The reason 𝑨−1𝒃 cannot be used to deblur im-

ages is the amplification of high-frequency components of the noise

in the data, caused by the inversion of very small singular values

of 𝑨. However, the solution 𝒙 can be estimated by many iterations.

Our minimization optimization can be written as the splitting of

two convex functions 𝑓 and 𝑔, as follows:

min

𝒙∈H
(𝑓 (𝒙) + 𝑔 (𝒙)) with 𝑓 (𝒙) = ∥𝑾𝒙 − 𝒄 ∥2

2
and 𝑔 (𝒙) = 𝜆 ∥∇𝒙 ∥2

2

where 𝑓 , 𝑔 : H → R are two proper and lower semi-continuous

convex functions such that 𝑓 is differentiable with 𝐿-Lipschitz con-

tinuous gradient [Combettes and Pesquet 2011].
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Fig. 4. Effects of Spatial PSF.We demonstrate the robustness of our solver
under the various amount of blurriness. We display the reference image of
the Eiffel tower (a). We show the blurring/deblurring effect of our solver
for different typical blur distribution patterns: linear motion blur (b), shake
motion blur (c), circular motion blur (d), non-linear motion blur (e), glare
for a 6-blade iris (f).

Convex Minimization Problem. Let H be a Hilbert space and the

functions 𝑓 : H → R be a convex smooth function and𝑔 : H → R
be a convex, lower-semicontinuous and nonsmooth function in H.

J. Math. Computer Sci., Vol. 37, No. 2, Article 3. Publication date: September 2024.
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Fig. 5. ImageQuality Assessment.We perform a quality and distortion image assessment of our deblurring solver on publicly available datasets such as
the bird (top row), bridge (middle row) and sphinx (bottom row) images. First, we display reference images used as the ground truth image (a), as well as
the blurred/deblurred images (b). Blurred images are obtained by corrupting the reference images with a motion blur of size length 21. Next, we show the
color-coded SSIM (c) between the reference and deblurred images. Finally, we display a side-by-side comparison of the color-coded visualization for the
SRRMSE (d), NRMSE (e), PSNR (f) and WSNR (g) at the first and last iteration of our deblurring solver with respect to the reference image.

We consider the problem of finding a point 𝒙∗ in the Hilbert space,

such that for all 𝒙 ∈ H,

𝑓
(
𝒙∗

)
+ 𝑔

(
𝒙∗

)
≤ 𝑓 (𝒙) + 𝑔 (𝒙) .

In particular, we define 𝐹 = ∇𝑓 an operator and 𝐺 = 𝜕𝑔 a multi-

valued operator, with ∇𝑓 is the gradient of 𝑓 . The subdifferential
operator is noted 𝜕𝑓 . We denote by 𝜕𝑔 the subdifferential of𝑔 defined

by:

𝜕𝑔 (𝒙) :=
{
𝒔 ∈ H : 𝑔 (𝑦) ≥ 𝑔 (𝒙) + ⟨𝑠,𝒚 − 𝒙⟩, ∀𝒚 ∈ H

}
.

The operator𝑇 can be written as the sum of two maximal monotone

operators, i.e. 𝑇 = 𝐹 +𝐺 from H to 2
H
such that

𝐽𝜆 (𝐹+𝐺 ) = (𝐹 +𝐺)−1 (0) = {𝒛 ∈ H | 0 ∈ (𝐹𝒛 +𝐺𝒛)} ≠ ∅.

The set of zero point 𝑇 −1 (0) defined by 𝑇 −1 (0) = {𝒛 : 0 ∈ 𝑇 𝒛}.
Then, 𝑇 −1 (0) equal to the set fixed point of 𝐽𝜆𝑇 . The problem is to

iteratively find a zero of the sum of two monotone operators 𝐹 and

𝐺 in a Hilbert space H is equivalent to find 𝒙∗ ∈ H a solution to the

inclusion problem such that:

0 ∈ ∇𝑓
(
𝒙∗

)
+ 𝜕𝑔

(
𝒙∗

)
also written as 0 ∈ (𝐹 +𝐺)

(
𝒙∗

)
.

The ▽𝑔 can be used if 𝑔 is smooth (i.e. real-valued and differentiable

everywhere with Lipschitzian gradient), otherwise 𝑔 is used proxi-

mally via its proximity operator. For any 𝜆 ∈ (0,+∞), its solutions
are characterized by the fixed point equation

𝒙 = prox𝜆𝑔 (𝒙 − 𝜆∇𝑓 (𝒙)) .

The proximal operator prox𝜆𝑔 of the scaled function 𝜆𝑔, with 𝜆 > 0,

reduced to Euclidean projection onto C a closed non-empty convex

set is expressed as:

prox𝜆𝑔 (𝒗) = argmin

𝒙∈C

(
𝑔 (𝒙) + 1

2𝜆
∥𝒙 − 𝒗∥2

2

)
where ∥·∥ is the Euclidean norm. The previous equation suggests

the possibility of iterating

𝒙𝑛+1 = prox𝜆𝑛𝑔︸   ︷︷   ︸
backward step

(𝒙𝑛 − 𝜆𝑛∇𝑓 (𝒙𝑛))︸                 ︷︷                 ︸
forward step

.

The mapping 𝐽𝜆𝜕𝑔 = (𝑰 + 𝜆𝜕𝑔)−1
is called the resolvent of operator

𝜕𝑔 with parameter 𝜆 > 0 and 𝑰 is the identity, in such way that the

proximal operator is the resolvent of the subdifferential operator.

The fixed points of the proximal operator of 𝑔 are the minimizers of

𝑔. We assume that 𝒙∗ is a solution of 𝑔 if and only if 𝐽𝜆𝜕𝑔 (𝒙∗) = 𝒙∗.
Then, prox𝜆𝑓 (𝒙∗) = 𝒙∗ if and only if 𝒙∗ minimizes 𝑔. We obtain the

the following equality:

prox𝜆𝑔 = (𝑰 + 𝜆𝜕𝑔)−1 .

The forward-backward scheme uses the recursive application of

an explicit forward step with respect to 𝐹 , followed by an implicit

backward step with respect to 𝐺 . The forward-backward splitting

method is defined by:

𝒙0 ∈ H and 𝒙𝑛+1 = (𝑰 + 𝜆𝐺)−1 (𝒙𝑛 − 𝜆𝐹𝒙𝑛) , 𝑛 ≥ 1.

In the equations, the subscript refers to the 𝑛th iteration. Also, we

consider the splitting iterative methods [Lions and Mercier 1979] in

a real Hilbert space at the (𝑛 + 1)𝑡ℎ iteration:

𝒙𝑛+1 =

(
2𝐽 𝐹
𝜆
− 𝑰

) (
2𝐽𝐺
𝜆
− 𝑰

)
𝒙𝑛, 𝑛 ≥ 1 and

𝒙𝑛+1 = 𝐽 𝐹
𝜆

(
2𝐽𝐺
𝜆
− 𝑰

)
𝒙𝑛 +

(
𝑰 − 𝐽𝐺

𝜆

)
𝒙𝑛, 𝑛 ≥ 1,

J. Math. Computer Sci., Vol. 37, No. 2, Article 3. Publication date: September 2024.
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Fig. 6. Image Quality Assessment. We perform quality and distortion image assessment of our deblurring solver for the elephant (top row) and
flower (bottom row) images. First, we display reference images used as the ground truth image (a), as well as the blurred/deblurred images (b). Blurred
images are obtained by corrupting the reference images with a motion blur of size length 21. Next, we show the color-coded Single Scale Structural Similarity
(SSIM) (c) between the reference and deblurred images. Finally, we display a side-by-side comparison of the color-coded visualization for the Standardized
Residual Root Mean Square Error (SRRMSE) (d), the Normalized Root Mean Square Error (NRMSE) (e), the Peak Signal to Noise Ratio (PSNR) (f) and Weighted
Signal to Noise Ratio (WSNR) (g) at the first and last iteration of our deblurring solver with respect to the reference image.

where 𝐽 𝐹
𝜆

= (𝑰 + 𝜆𝐹 )−1
and where 𝐽𝐺

𝜆
= (𝑰 + 𝜆𝐺)−1

with 𝜆 > 0.

The proximity operator of 𝑔 is denoted prox𝜆𝑛𝑔
(𝑰 + 𝜆𝜕𝑔)−1

with

the step size 𝜆 > 0. Then, the problem becomes

𝒙𝑛+1 = prox𝜆𝑔 (𝒙𝑛 − 𝜆∇𝑓 (𝒙𝑛)) , 𝑛 ≥ 1.

Next, we consider the inertial proximal point algorithm converges

weakly to a zero of 𝐺 with the following form:{
𝒚𝑛 = 𝒙𝑛 + 𝜃𝑛 (𝒙𝑛 − 𝒙𝑛−1)
𝒙𝑛+1 = (𝑰 + 𝜆𝑛𝐺)−1𝒚𝑛, 𝑛 ≥ 1.

If {𝜆𝑛} is non-decreasing and {𝜃𝑛} ⊂ [0, 1) with
∞∑︁
𝑛=1

𝜃𝑛 ∥𝒙𝑛 − 𝒙𝑛−1∥2 < ∞.

{𝛼𝑛}𝑛∈N is a sequence in [0, 2] so that

∑︁
𝑛∈N

𝛼𝑛 (2 − 𝛼𝑛) =∞.

Let 𝜏 ∈ (0,∞), and 𝒙0 ∈ H. Set
𝒖𝑛 = 𝐽𝐺𝜏 𝒙𝑛
𝒚𝑛 = 𝐽 𝐹𝜏 (2𝒖𝑛 − 𝒙𝑛)
𝒙𝑛+1 = 𝒙𝑛 + 𝛼𝑛 (𝒚𝑛 − 𝒖𝑛) .

3 OUR NUMERICAL SOLVER
We provide the theorem for our new iterations with the inertial

technical term and a forward-backward method for solving the

constrained problem as follows:

min

𝒙∈R𝑁

1

2

∥𝑨𝒙 − 𝒃 ∥2
2
+ 𝑔 (𝒙) (2)

where 𝑨 : R𝑁 → R𝑀 is bounded linear operator, 𝒃 ∈ R𝑀 is fixed

and𝑔 : R𝑁 → (−∞,∞] is proper, lower-semicontinuous and convex

function.

Proposed Theorem. Let 𝑨 : R𝑁 → R𝑀 be a bounded linear

operator and 𝒃 ∈ R𝑀 with 𝐾 the largest eigenvalue of 𝑨𝑇𝑨. Let
{𝒙𝑛} be a sequence generated by 𝒙0, 𝒙1 ∈ R𝑁 and



𝒚𝑛 = 𝒙𝑛 + 𝜃𝑛 (𝒙𝑛 − 𝒙𝑛−1) ,
𝒛𝑛 = (1 − 𝛾𝑛)𝒚𝑛 + 𝛾𝑛 prox𝜏𝑛𝑔

(
𝒚𝑛 − 𝜏𝑛𝑨𝑇 (𝑨𝒚𝑛 − 𝒃)

)
,

𝒖𝑛 = (1 − 𝛽𝑛 − 𝛿𝑛) 𝒛𝑛 + 𝛿𝑛𝒚𝑛
+ 𝛽𝑛 prox𝜏𝑛𝑔

(
𝒛𝑛 − 𝜏𝑛𝑨𝑇 (𝑨𝒛𝑛 − 𝒃)

)
,

𝒙𝑛+1 = (1 − 𝛼𝑛 − 𝜎𝑛) 𝒖𝑛 + 𝜎𝑛𝒛𝑛
+ 𝛼𝑛 prox𝜏𝑛𝑔

(
𝒖𝑛 − 𝜏𝑛𝑨𝑇 (𝑨𝒖𝑛 − 𝒃)

)
,

where {𝜏𝑛} ⊂ (0, 2/𝐾), {𝜃𝑛} ⊂ [0, 𝜃 ] for some 𝜃 ∈ [0, 1) and
{𝛼𝑛}, {𝛽𝑛}, {𝛾𝑛}, {𝛿𝑛}, {𝜎𝑛} are sequences in [0, 1]. To establish

theoretical convergence, we need to assume that suitable conditions

hold. The suitable conditions to be assumed are the following:

(i)
∞∑︁
𝑛=1

𝜃𝑛 ∥𝒙𝑛 − 𝒙𝑛−1∥ < ∞,

(ii) 0 < lim inf

𝑛→∞
𝛾𝑛 < lim sup

𝑛→∞
𝛾𝑛 < 1,

(iii) lim sup

𝑛→∞
𝛿𝑛 < 1, lim sup

𝑛→∞
𝜎𝑛 < 1,

(iv) 0 < lim inf

𝑛→∞
𝜏𝑛 ≤ lim sup

𝑛→∞
𝜏𝑛 <

2

𝐾
.

Then, {𝑥𝑛} converges to a minimizer of the problem (described in

Equation (2)).

Remark. We remark here that the condition (i) is easy to imple-

ment since the value of ∥𝒙𝑛 − 𝒙𝑛−1∥ is known before choosing 𝜃𝑛 .

Indeed, the parameter 𝜃𝑛 can be chosen such that 0 ≤ 𝜃𝑛 ≤ ¯𝜃𝑛 ,

where

¯𝜃𝑛 =

{
min

{
𝜔𝑛

∥𝒙𝑛−𝒙𝑛−1 ∥ , 𝜃
}

if 𝒙𝑛 ≠ 𝒙𝑛−1

𝜃 otherwise

where {𝜔𝑛} is a positive sequence such that

∑∞
𝑖=𝑛 𝜔𝑛 < ∞. We use

the following parameters:

𝜏𝑛 =
1

∥𝑨∥
1
∥𝑨∥∞

, 𝜃 =
1

4

, 𝛼𝑛 =
𝑛

100𝑛 + 1

and 𝛼𝑛 = 𝛽𝑛 = 𝛾𝑛 . Then, {𝒙𝑛} converges strongly.
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4 SOLVER PSEUDO-CODE
The algorithm described previously in our proposed theorem is easy

and straightforward to implement as detailed in the corresponding

pseudo-code (see Algorithm 1).

Algorithm 1 Generalized Inertial Proximal Deblurring

Input: 𝑨, left-hand side containing the blurring matrix

Input: 𝒃 , right-hand side containing blurred signal.

Input: 𝑐 , maximum number of iterations.

Output: 𝒙 , unknown restored signal.

1: function Solver(𝑨, 𝒃)
2: /* Initialization */

3: 𝑛 ← 1

4: /* vector of maximum values of 𝑨 column-wise */

5: 𝒙0 ← max
col
(𝑨)

6: /* vector of minimum values of 𝑨 column-wise */

7: 𝒙1 ← min
col
(𝑨)

8: /* Iterations */

9: while (𝑛 < c) and
(
∥𝒙𝑛 − 𝒙𝑛−1∥ < 10

−5
)
do

10: /* Parameters Update */

11: 𝜏𝑛 ← 1

∥𝑨∥
1
∥𝑨∥∞

12: 𝛼𝑛 ← 1 − 𝑛
100𝑛+1

13: 𝛽𝑛 ← 𝛾𝑛 = 𝛼𝑛
14: 𝜎𝑛 ← 𝛿𝑛 = 1

100𝑛2+1

15: /* Step 1 - find 𝜃𝑛 */

16: 𝜃𝑛 =

{
min

(
1

𝑛2 ∥𝒙𝑛−𝒙𝑛−1 ∥ , 0.25

)
if 𝒙𝑛 ≠ 𝒙𝑛−1

0.25 otherwise

17: /* Step 2 - find 𝑦𝑛 */

18: 𝒚𝑛 ← 𝒙𝑛 + 𝜃𝑛 (𝒙𝑛 − 𝒙𝑛−1)
19: /* Step 3 - find 𝑧𝑛 */

20: 𝒛𝑛 ← (1 − 𝛾𝑛)𝒚𝑛
+ 𝛾𝑛 prox𝜏𝑛𝑔

(
𝒚𝑛 − 𝜏𝑛𝑨𝑇 (𝑨𝒚𝑛 − 𝒃)

)
21: /* Step 4 - find 𝑢𝑛 */

22: 𝒖𝑛 ← (1 − 𝛽𝑛 − 𝛿𝑛) 𝒛𝑛 + 𝛿𝑛𝒚𝑛
+ 𝛽𝑛 prox𝜏𝑛𝑔

(
𝒛𝑛 − 𝜏𝑛𝑨𝑇 (𝑨𝒛𝑛 − 𝒃)

)
23: /* Step 5 - find 𝑥𝑛+1 */

24: 𝒙𝑛+1 ← (1 − 𝛼𝑛 − 𝜎𝑛) 𝒖𝑛 + 𝜎𝑛𝒛𝑛
+ 𝛼𝑛 prox𝜏𝑛𝑔

(
𝒖𝑛 − 𝜏𝑛𝑨𝑇 (𝑨𝒖𝑛 − 𝒃)

)
25: 𝑛 ← 𝑛 + 1

26: return 𝒙

The parameters used in our pseudo-code are the extrapolation pa-

rameter (𝜃𝑛), the convergence step size (𝜏𝑛), the SP-parameters (𝛼𝑛 ,

𝛽𝑛) and the generalized SP parameters (𝛿𝑛 , 𝜎𝑛). The convergence

step size 𝜏 remains constant for all iterations (line 11). To ensure

convergence, the convergence step size must satisfy 0 < 𝜏 < 2

𝜎2

𝑚𝑎𝑥

with 𝜎𝑚𝑎𝑥 is the largest singular valued of 𝑨. The inertial term is

represented by the term 𝜃𝑛 (𝒙𝑛 − 𝒙𝑛−1). This inertial term is related

to the condition

∑∞
𝑛=1

𝜃𝑛 ∥𝒙𝑛 − 𝒙𝑛−1∥ < ∞. We detail the iterative

steps of our algorithm as follows. The first step (lines 15-16) com-

putes 𝜃𝑛 as the extrapolation parameter for the current iteration.

The second step (line 17 ) computes the inertial term 𝑦𝑛 using the

heavy Ball method [Polyak 1964, 1987] written as 𝜃𝑛 (𝒙𝑛 − 𝒙𝑛−1).
Then, from the third step to fifth step, we generalize SP-iterations.

The third step (line 19) performs the forward backward step 𝑧𝑛 .

The fourth step (line 19) performs the Richardson iteration 𝑢𝑛 . The

Richardson iteration is generally used as an iterative regularization

method. The fifth step (lines 23-24) returns the overall result for the
current iteration. We note that {𝛼𝑛}, {𝛽𝑛} and {𝛾𝑛} are sequences
in [0, 1]. We choose 𝒙0 and 𝒙1 to be respectively the vector stacking

the minimum and maximum image intensity per-column of the

input image (lines 4-7 ). Finally, the stopping criterion is defined

by ∥𝒙𝑛+1 − 𝒙𝑛 ∥ < 10
−5

(line 9). The stopping criterion is set to

the residual norm ∥𝒃 −𝑨𝒙𝑛 ∥ < 10
−5

to ensure algorithmic conver-

gence regardless of the nature of the data. We provide a proof of

convergence.

5 ALGORITHM PROOF
We provide a rigorous proof for the theorem of convergence and its

resulting algorithm mentioned above. We split this proof into five

comprehensive steps.

• First Step: In this first step, we show that ∀𝑥,𝑦 ∈ R𝑁 , 𝜏 ∈ (0, 2/𝐾),
we have the follow inequality:prox𝜏𝑔 (

𝒙 − 𝜏𝑨𝑇 (𝑨𝒙 − 𝒃)
)

−prox𝜏𝑔
(
𝒚 − 𝜏𝑨𝑇 (𝑨𝒚 − 𝒃)

) ≤ ∥𝒙 −𝒚∥
Since 𝑨 is bounded linear operator, we have the following expres-

sion: 𝜏𝑨𝑇 (𝑨𝒙 − 𝒃) − 𝜏𝑨𝑇 (𝑨𝒚 − 𝒃)2

=

𝜏𝑨𝑇𝑨 (𝒙 −𝒚)2

= ⟨𝜏𝑨𝑇𝑨 (𝒙 −𝒚) , 𝜏𝑨𝑇𝑨 (𝒙 −𝒚)⟩
≤ 𝜏 𝐾 ⟨𝒙 −𝒚 , 𝜏𝑨𝑇𝑨 (𝒙 −𝒚)⟩.

This derivation implies that

⟨𝒙 −𝒚, 𝜏𝑨𝑇𝑨 (𝒙 −𝒚)⟩ ≥
1

𝜏 𝐾

𝜏𝑨𝑇 (𝑨𝒙 − 𝒃) − 𝜏𝑨𝑇 (𝑨𝒚 − 𝒃)2

.

It follows from Equation 3 and 𝜏 ∈ (0, 2/𝐾) thatprox𝜏𝑔 (
𝒙 − 𝜏𝑨𝑇 (𝑨𝒙 − 𝒃)

)
−prox𝜏𝑔

(
𝒚 − 𝜏𝑨𝑇 (𝑨𝒚 − 𝒃)

)2

≤
𝒙 − 𝜏𝑨𝑇 (𝑨𝒙 − 𝒃) − (

𝒚 − 𝜏𝑨𝑇 (𝑨𝒚 − 𝒃)
)2

=

(𝒙 −𝒚) − 𝜏𝑨𝑇𝑨 (𝒙 −𝒚)2

= ∥𝒙 −𝒚∥2 −
𝜏𝑨𝑇𝑨 (𝒙 −𝒚)2

−2⟨(𝒙 −𝒚) − 𝜏𝑨𝑇𝑨 (𝒙 −𝒚) , 𝜏𝑨𝑇𝑨 (𝒙 −𝒚)⟩

= ∥𝒙 −𝒚∥2 +
𝜏𝑨𝑇𝑨 (𝒙 −𝒚)2

−2⟨(𝒙 −𝒚) , 𝜏𝑨𝑇𝑨 (𝒙 −𝒚)⟩

≤ ∥𝒙 −𝒚∥2 +
(
1 − 2

𝑟𝐾

) 𝜏𝑨𝑇𝑨 (𝒙 −𝒚)2

≤ ∥𝒙 −𝒚∥2
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Error Metrics Quality Metrics

RMSLE NRMSE SRRMSE SSIM DSSIM UQI SNR WSNR PSNR

B
i
r
d

Forward-Backward 0.01435 ± 1.6 0.16554 ± 2.8 0.02530 ± 1.8 0.03388 ± 0.7 0.48342 ± 0.3 0.02214 ± 44.7 14.25029 ± 53.8 −34.13791 ± 55.8 39.1146

Douglas-Rachford 0.01065 ± 1.6 0.11947 ± 2.6 0.01889 ± 1.8 0.03511 ± 0.9 0.48280 ± 0.4 0.03561 ± 30.2 14.23081 ± 49.6 −27.89751 ± 60.2 42.2228

Viscosity 0.01440 ± 1.6 0.16593 ± 2.8 0.02539 ± 1.8 0.03387 ± 0.7 0.48343 ± 0.3 0.02217 ± 45.4 14.24476 ± 54.0 −34.19123 ± 55.7 39.0783

Richardson 0.01435 ± 1.6 0.16555 ± 2.8 0.02530 ± 1.8 0.03388 ± 0.7 0.48342 ± 0.3 0.02211 ± 44.0 14.25023 ± 53.7 −34.13960 ± 55.8 39.1147

Ours 0.00891 ± 1.5 0.09796 ± 2.4 0.01586 ± 1.8 0.03555 ± 0.8 0.48257 ± 0.4 0.05659 ± 38.8 14.23118 ± 52.3 −24.06918 ± 62.9 44.1166

B
r
i
d
g
e

Forward-Backward 0.01201 ± 0.8 0.07820 ± 1.0 0.02129 ± 1.7 0.07312 ± 0.9 0.46405 ± 0.4 0.03869 ± 7.0 13.10795 ± 33.2 −19.23074 ± 49.6 46.6249

Douglas-Rachford 0.01086 ± 0.8 0.07078 ± 0.8 0.01925 ± 1.3 0.07344 ± 0.9 0.46389 ± 0.4 0.04370 ± 6.9 13.10684 ± 33.1 −17.78394 ± 48.9 47.8850

Viscosity 0.01199 ± 0.8 0.07829 ± 1.0 0.02126 ± 1.7 0.07311 ± 0.9 0.46405 ± 0.4 0.03877 ± 7.0 13.10783 ± 33.1 −19.21875 ± 49.7 46.6022

Richardson 0.01201 ± 0.8 0.07820 ± 1.0 0.02129 ± 1.7 0.07312 ± 0.9 0.46405 ± 0.4 0.03869 ± 7.0 13.10795 ± 33.2 −19.23074 ± 49.9 46.6249

Ours 0.01058 ± 0.6 0.06898 ± 0.8 0.01876 ± 1.2 0.07359 ± 0.9 0.46381 ± 0.4 0.04466 ± 6.9 13.10303 ± 33.0 −17.51636 ± 49.2 48.4250

S
p
h
i
n
x

Forward-Backward 0.02039 ± 1.1 0.25287 ± 2.5 0.03571 ± 1.6 0.01614 ± 0.9 0.49232 ± 0.4 −0.02448 ± 214.6 10.40382 ± 52.6 −34.69215 ± 48.8 35.1107

Douglas-Rachford 0.01813 ± 1.0 0.22495 ± 1.9 0.03176 ± 1.3 0.01679 ± 0.9 0.49200 ± 0.4 −0.03774 ± 233.0 10.40546 ± 53.1 −33.11753 ± 45.9 36.4943

Viscosity 0.02045 ± 1.1 0.25338 ± 2.5 0.03581 ± 1.6 0.01613 ± 0.9 0.49233 ± 0.4 −0.02511 ± 204.4 10.40269 ± 52.2 −34.70973 ± 49.1 35.0897

Richardson 0.02039 ± 1.1 0.25287 ± 2.5 0.03571 ± 1.6 0.01614 ± 0.9 0.49232 ± 0.4 −0.02449 ± 214.7 10.40382 ± 52.6 −34.69227 ± 48.8 35.1107

Ours 0.01701 ± 0.9 0.21120 ± 1.9 0.02979 ± 1.3 0.01711 ± 0.9 0.49184 ± 0.4 −0.03330 ± 226.2 10.40383 ± 52.9 −32.22014 ± 47.3 37.2093

Table 1. Quantitative Evaluation and Comparison: We perform quantitative evaluation of image quality assessment metrics for our solver on the bird,
bridge and sphinx images. We provide measurement between deblurred and reference images for RMSLE, NRMSE, SRRMSE, SSIM, DSSIM, UQI, SNR, WSNR,
PSNR. We compare statistics of our solver with Forward-Backward [Combettes and Wajs 2005; Liu et al. 2012], Douglas-Rachford [Douglas and Rachford
1956], Viscosity [Imnang 2013; Kitkuan et al. 2019], Richardson [Richardson 1910].

Error Metrics Quality Metrics

RMSLE NRMSE SRRMSE SSIM DSSIM UQI SNR WSNR PSNR

E
l
e
p
h
a
n
t Forward-Backward 0.01270 ± 1.3 0.12996 ± 3.4 0.02250 ± 1.6 0.00798 ± 0.9 0.49642 ± 0.4 0.00125 ± 8.0 13.45384 ± 52.8 −21.46062 ± 65.2 39.1037

Douglas-Rachford 0.00995 ± 1.4 0.09925 ± 3.2 0.01782 ± 1.7 0.00826 ± 0.9 0.49629 ± 0.4 0.00972 ± 103.3 13.51303 ± 73.6 −18.03994 ± 67.3 41.9135

Viscosity 0.01273 ± 1.3 0.13039 ± 3.3 0.02255 ± 1.6 0.00798 ± 0.9 0.49643 ± 0.4 0.00113 ± 8.0 13.45396 ± 52.8 −21.49621 ± 64.5 39.0765

Richardson 0.01270 ± 1.3 0.12996 ± 3.4 0.02250 ± 1.6 0.00798 ± 0.9 0.49642 ± 0.4 0.00125 ± 8.0 13.45384 ± 52.8 −21.46062 ± 65.2 39.1037

Ours 0.00844 ± 1.2 0.08152 ± 3.1 0.01526 ± 1.6 0.00840 ± 0.9 0.49621 ± 0.4 0.00272 ± 4.7 13.46599 ± 47.0 −15.56681 ± 69.1 43.9694

F
l
o
w
e
r

Forward-Backward 0.01277 ± 2.2 0.13509 ± 3.7 0.02208 ± 1.9 0.04682 ± 0.9 0.47771 ± 0.4 0.00348 ± 6.8 22.46092 ± 37.3 −24.80973 ± 70.2 36.1787

Douglas-Rachford 0.01099 ± 1.9 0.11903 ± 3.0 0.01962 ± 1.9 0.04769 ± 0.9 0.04769 ± 0.9 0.47728 ± 0.4 0.00350 ± 7.9 −23.76566 ± 67.9 37.7950

Viscosity 0.01280 ± 2.2 0.13534 ± 3.7 0.02210 ± 1.9 0.04677 ± 0.9 0.47774 ± 0.4 0.00332 ± 7.0 22.46047 ± 37.3 −24.82603 ± 70.3 36.1553

Richardson 0.01277 ± 2.2 0.13509 ± 3.7 0.02208 ± 1.9 0.04682 ± 0.9 0.47771 ± 0.4 0.00348 ± 6.8 22.46092 ± 37.3 −24.80973 ± 70.2 36.1787

Ours 0.01006 ± 1.9 0.11150 ± 2.7 0.01826 ± 1.9 0.04816 ± 0.9 0.47705 ± 0.4 0.00276 ± 9.3 22.44692 ± 35.4 −23.24203 ± 66.2 38.6136

Table 2. Quantitative Evaluation and Comparison: We perform a image quality assessment for our solver on the elephant and flower images. We
provide measurement between deblurred and reference images for the Root Mean Squared Log Error (RMSLE), Normalized Root Mean Square Error (NRMSE),
Standardized Residual Root Mean Square Error (SRRMSE), Single Scale Structural Similarity (SSIM), Structural Dissimilarity (DSSIM), Universal Quality Index
(UQI), Signal-to-Noise Ratio (SNR), Weighted Signal-to-Noise Ratio (WSNR), Peak Signal-to-Noise Ratio (PSNR). We compare statistic of our solver with
Forward-Backward [Combettes and Wajs 2005; Liu et al. 2012], Douglas-Rachford [Douglas and Rachford 1956], Viscosity [Imnang 2013; Kitkuan et al. 2019],
Richardson [Richardson 1910]. Our method outperforms state-of-the-art proximal methods by producing the most competitive performance.

• Second Step:We exhibit in this second step that {𝒙𝑛} is bounded.
Let𝑝 denotes the following expression arg min

{
1

2
∥𝑨𝒙 − 𝒃 ∥2

2
+ 𝑔 (𝒙)

}
and 𝑆𝜏𝒙 = prox𝜏𝑔

(
𝒙 − 𝜏𝑨𝑇 (𝑨𝒙 − 𝒃)

)
. From the first step, we de-

rive the following inequalities:

∥𝒙𝑛+1 − 𝑝 ∥ ≤ (1 − 𝛼𝑛 − 𝜎𝑛) ∥𝒖𝑛 − 𝑝 ∥ + 𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥
+𝛼𝑛

𝑆𝜏𝑛𝒖𝑛 − 𝑝
≤ (1 − 𝜎𝑛) ∥𝒖𝑛 − 𝑝 ∥ + 𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥
≤ (1 − 𝜎𝑛) ((1 − 𝛽𝑛 − 𝛿𝑛) ∥𝒛𝑛 − 𝑝 ∥
+𝛿𝑛 ∥𝒚𝑛 − 𝑝 ∥ + 𝛽𝑛

𝑆𝜏𝑛𝒛𝑛 − 𝑝) + 𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥
≤ (1 − 𝜎𝑛) ((1 − 𝛿𝑛) ∥𝒛𝑛 − 𝑝 ∥
+𝛿𝑛 ∥𝒚𝑛 − 𝑝 ∥) + 𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥

≤ (1 − 𝜎𝑛) ((1 − 𝛿𝑛) ((1 − 𝛾𝑛) ∥𝒚𝑛 − 𝑝 ∥
+𝛾𝑛

𝑆𝜏𝑛𝒚𝑛 − 𝑝) + 𝛿𝑛 ∥𝒚𝑛 − 𝑝 ∥)
+𝜎𝑛

(
(1 − 𝛾𝑛) ∥𝒚𝑛 − 𝑝 ∥ + 𝛾𝑛

𝑆𝜏𝑛𝒚𝑛 − 𝑝)
≤ ∥𝒚𝑛 − 𝑝 ∥
≤ ∥𝒙𝑛 − 𝑝 ∥ + 𝜃𝑛 ∥𝒙𝑛 − 𝒙𝑛−1∥ .

From Alvarez’s Lemma [Alvarez and Attouch 2001] and the as-

sumption (i), lim

𝑛→∞
∥𝒙𝑛 − 𝑝 ∥ exists. In particular, {𝒙𝑛}, {𝒚𝑛}, {𝒛𝑛}

and {𝒖𝑛} are bounded.

• Third Step: We highlight that lim

𝑛→∞

𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛 = 0. From the

first step, we derive the following inequalities:

∥𝒙𝑛+1 − 𝑝 ∥2 ≤ (1 − 𝛼𝑛 − 𝜎𝑛) ∥𝒖𝑛 − 𝑝 ∥2

+𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥2 + 𝛼𝑛
𝑆𝜏𝑛𝒚𝑛 − 𝑝2

≤ (1 − 𝜎𝑛) ∥𝒖𝑛 − 𝑝 ∥2 + 𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥2

≤ (1 − 𝜎𝑛)
(
(1 − 𝛽𝑛 − 𝛿𝑛) ∥𝒛𝑛 − 𝑝 ∥2

+𝛿𝑛 ∥𝒚𝑛 − 𝑝 ∥2 + 𝛽𝑛
𝑆𝜏𝑛𝒛𝑛 − 𝑝2

)
+𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥2

≤ (1 − 𝜎𝑛)
(
(1 − 𝛿𝑛) ∥𝒛𝑛 − 𝑝 ∥2

+𝛿𝑛 ∥𝒚𝑛 − 𝑝 ∥2
)
+ 𝜎𝑛 ∥𝒛𝑛 − 𝑝 ∥2

= ((1 − 𝜎𝑛) (1 − 𝛿𝑛) + 𝜎𝑛) ∥𝒛𝑛 − 𝑝 ∥2

+ (1 − 𝜎𝑛) 𝛿𝑛 ∥𝒚𝑛 − 𝑝 ∥2
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Fig. 7. Convergence Rate and Quality Evolution. We compare the PNSR quality and convergence error for our solver against Forward-Backward
(FBM) [Combettes and Wajs 2005; Liu et al. 2012], Douglas-Rachford (DRM) [Douglas and Rachford 1956], Viscosity (VM) [Imnang 2013; Kitkuan et al. 2019]
and Richardson (RM) [Richardson 1910]. We plot the PSNR quality (a,c,e,g) and convergence error ∥𝑥𝑛+1 − 𝑥𝑛 ∥ (b,d,f,h) respectively for the elephant (top
left), flower (top right), bird (bottom left), sphinx (bottom right) images. We provide intra-iteration visual quality of the deblurring over the estimated
image to cross-reference qualitative with quantitative evaluation. The convergence of our algorithm to the optimal solution is guaranteed by the convexity of
the cost function used for the adaptation. We depict the performance of our solver in red color. Our solver demonstrates constant superiority over the baseline
with fastest convergence and fewer iterations than the standard methods.

∥𝒙𝑛+1 − 𝑝 ∥2 = ((1 − 𝜎𝑛) (1 − 𝛿𝑛) + 𝜎𝑛)(
(1 − 𝛾𝑛) ∥𝒚𝑛 − 𝑝 ∥2 + 𝛾𝑛

𝑆𝜏𝑛𝒚𝑛 − 𝑝2

− (1 − 𝛾𝑛) 𝛾𝑛
𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛2

)
+ (1 − 𝜎𝑛) 𝛿𝑛 ∥𝒚𝑛 − 𝑝 ∥2

≤ ∥𝒚𝑛 − 𝑝 ∥2 − ((1 − 𝜎𝑛) (1 − 𝛿𝑛) + 𝜎𝑛)
(1 − 𝛾𝑛) 𝛾𝑛

𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛2

≤ ∥𝒙𝑛 − 𝑝 ∥2 + 2𝜃𝑛 ⟨𝒙𝑛 − 𝒙𝑛−1,𝒚𝑛 − 𝑝⟩
− ((1 − 𝜎𝑛) (1 − 𝛿𝑛) + 𝜎𝑛)
(1 − 𝛾𝑛) 𝛾𝑛

𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛2

≤ ∥𝒙𝑛 − 𝑝 ∥2 + 2𝜃𝑛 ∥𝒙𝑛 − 𝒙𝑛−1∥ ∥𝒚𝑛 − 𝑝 ∥
− ((1 − 𝜎𝑛) (1 − 𝛿𝑛) + 𝜎𝑛) (1 − 𝛾𝑛)
𝛾𝑛

𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛2

.

This derivation implies that

((1 − 𝜎𝑛) (1 − 𝛿𝑛) + 𝜎𝑛) (1 − 𝛾𝑛) 𝛾𝑛
𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛2

≤ ∥𝒙𝑛 − 𝑝 ∥2 − ∥𝒙𝑛+1 − 𝑝 ∥2

+2𝜃𝑛 ∥𝒙𝑛 − 𝒙𝑛−1∥ ∥𝒚𝑛 − 𝑝 ∥ . (3)

Given that lim

𝑛→∞
∥𝒙𝑛 − 𝑝 ∥ exists and taking the assumptions (i)-(iii),

we can state from Equation (3) that lim

𝑛→∞

𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛 = 0.

• Fourth Step:We demonstrate that {𝒙𝑛} converges to some point

𝑞 ∈ R𝑁 . Since {𝒚𝑛} is bounded, it exists a sub-sequence
{
𝒚𝑛𝑘

}
of

{𝒚𝑛} converging to 𝑞1 ∈ R𝑁 . We take another sub-sequence

{
𝒚𝑛 𝑗

}
of {𝒚𝑛} converging to 𝑞2 ∈ R𝑁 . Assuming 𝑞1 ≠ 𝑞2, then by the

Opial’s condition of R𝑁 , we derive the following expression:
lim inf

𝑛→∞
∥𝒚𝑛 − 𝑞1∥ = lim inf

𝑘→∞

𝒚𝑛𝑘 − 𝑞1


< lim inf

𝑘→∞

𝒚𝑛𝑘 − 𝑞2


= lim inf

𝑛→∞
∥𝒚𝑛 − 𝑞2∥
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= lim inf

𝑗→∞

𝒚𝑛 𝑗
− 𝑞2


< lim inf

𝑗→∞

𝒚𝑛 𝑗
− 𝑞1


= lim inf

𝑛→∞
∥𝒚𝑛 − 𝑞1∥

which is a contradiction.

Therefore, 𝑞1 = 𝑞2. We show that {𝒚𝑛} converges to 𝑞 ∈ R𝑁 . By
definition of {𝑥𝑛} and our assumption (𝑖), we get the following

equality:

lim

𝑛→∞
∥𝒙𝑛 −𝒚𝑛 ∥ = lim

𝑛→∞
𝜃𝑛 ∥𝒙𝑛 − 𝒙𝑛−1∥ = 0.

This equality implies that {𝒙𝑛} also converges to 𝑞 ∈ R𝑁 .
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Fig. 8. Comparison with FISTA.We provide the reference image of the
Lamborghini and the image corrupted with a motion blur of size length
21 (top left). Then, we display a side-by-side comparison of the deblurred
image using the Fast proximal gradient methods (FISTA) [Beck and Teboulle
2009] and our solver after 20000 iterations (top right). Our solver obtains
better PSNR quality (bottom right) and faster convergence (bottom right)
than the FISTA.

• Fifth Step: In this next step, we would like to show that 𝑞 =

arg min

{
1

2
∥𝑨𝒙 − 𝒃 ∥2

2
+ 𝑔 (𝒙)

}
. First, we show that for any 𝜀 > 0,

there exists a positive number 𝜑 (𝜀) > 0 such that ∥𝑆𝜏𝒙 − 𝒙 ∥ < 𝜀

for all 𝒙 ∈ 𝑐𝑜 ({𝒙0, 𝒙1}), 𝑟 ∈
(
0, 2

𝐾

)
, whenever 𝒙0, 𝒙1 ∈ R𝑁 with

∥𝑆𝜏𝒙0 − 𝒙0∥ ≤ 𝜑 (𝜀) and ∥𝑆𝜏𝒙1 − 𝒙1∥ ≤ 𝜑 (𝜀). Let 𝒙 = (1 − 𝜆) 𝒙0 +
𝜆𝒙1, for some 𝜆 ∈ [0, 1] and 𝜀 > 0. We consider the following two

cases.

Case I. If ∥𝒙0 − 𝒙1∥ < 𝜀
3
, then

∥𝒙 − 𝒙0∥ = 𝜆 ∥𝒙0 − 𝒙1∥ <
𝜀

3

.

If 𝜑 (𝜀) < 𝜀
3
, then we obtain the following inequality from the first

step:

∥𝑆𝜏𝒙 − 𝒙 ∥ ≤ ∥𝑆𝜏𝒙 − 𝑆𝜏𝒙0∥
+ ∥𝑆𝜏𝒙0 − 𝒙0∥ + ∥𝒙0 − 𝒙 ∥

≤ 2 ∥𝒙0 − 𝒙 ∥ + ∥𝑆𝜏𝒙0 − 𝒙0∥

< 2

( 𝜀
3

)
+ 𝜑 (𝜀) < 𝜀.

Case II. If ∥𝒙0 − 𝒙1∥ ≥ 𝜀
3
, then for any non-negative number 𝜆 such

that 𝜆 < 𝜀
3∥𝒙0−𝒙1 ∥ , we have

∥𝒙 − 𝒙0∥ = 𝜆 ∥𝒙0 − 𝒙1∥ <
𝜀

3

.

If 𝜑 (𝜀) < 𝜀
3
and 𝜆 < 𝜀

3∥𝒙0−𝒙1 ∥ , we derive the following inequality

from the first step:

∥𝑆𝜏𝒙 − 𝒙 ∥ ≤ ∥𝑆𝜏𝒙 − 𝑆𝜏𝒙0∥ + ∥𝑆𝜏𝒙0 − 𝒙0∥
+ ∥𝒙0 − 𝒙 ∥

≤ 2 ∥𝒙0 − 𝒙 ∥ + ∥𝑆𝜏𝒙0 − 𝒙0∥

< 2

( 𝜀
3

)
+ 𝜑 (𝜀) < 𝜀.

We assume that 𝜆 ∈
[

𝜀
3∥𝒙0−𝒙1 ∥ , 1

]
and ∥𝒙0 − 𝒙1∥ ≥ 𝜀

3
.

From the first step, we obtain the following equality:

∥𝑆𝜏𝒙 − 𝒙0∥ ≤ ∥𝑆𝜏𝒙 − 𝑆𝜏𝒙0∥ + ∥𝑆𝜏𝒙0 − 𝒙0∥
≤ ∥𝒙 − 𝒙0∥ + 𝜑 (𝜀)
= 𝜆 ∥𝒙1 − 𝒙0∥ + 𝜑 (𝜀) (4)

as well as the next following equality:

∥𝑆𝜏𝒙 − 𝒙1∥ ≤ ∥𝑆𝜏𝒙 − 𝑆𝜏𝒙1∥ + ∥𝑆𝜏𝒙1 − 𝒙1∥
≤ ∥𝒙 − 𝒙1∥ + 𝜑 (𝜀)
= (1 − 𝜆) ∥𝒙1 − 𝒙0∥ + 𝜑 (𝜀) . (5)

From Equations (4) and (5) and 𝜆 ∈
[

𝜀
3∥𝒙0−𝒙1 ∥ , 1

]
, we obtain

∥𝑆𝜏𝒙 − 𝒙 ∥ ≤ (1 − 𝜆) ∥𝑆𝜏𝒙 − 𝒙0∥ + 𝜆 ∥𝑆𝜏𝒙 − 𝒙1∥
≤ 2 (1 − 𝜆) 𝜆 ∥𝒙1 − 𝒙0∥ + 𝜑 (𝜀) < 𝜀.

From the third step, we know that lim

𝑛→∞

𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛 = 0. We set

𝜀𝑛 =
𝑆𝜏𝑛𝒚𝑛 −𝒚𝑛. Let 𝜀 > 0. Since 𝜀𝑛 → 0 as 𝑛 →∞, there exists

𝑀 ∈ N such that

𝜀𝑛 < 𝜀 , ∀𝑛 ≥ 𝑀.
We proof that 𝒛 ∈ ¯𝑐𝑜 ({𝒚𝑛 : 𝑛 ≥ 𝑀}),

𝑆𝜏𝑛 𝒛 − 𝒛 < 𝜀. We denote by

¯𝑐𝑜 the closed convex hull. By the compactness of ¯𝑐𝑜 ({𝒚𝑛 : 𝑛 ≥ 𝑀}),
containing the limit 𝒒 of {𝒚𝑛}. Next,

𝑆𝜏𝑛𝒒 − 𝒒 < 𝜀, ∀𝑛 ≥ 𝑀 . Hence𝑆𝜏𝑛𝒒 − 𝒒 = 0 and 𝑆𝜏𝑛𝒒 = 𝒃 since 𝜀 is arbitrary. Finally, we obtain

𝑞 = prox𝜏𝑛𝑔

(
𝒒 − 𝜏𝑛𝑨𝑇 (𝑨𝒒 − 𝒃)

)
, resulting in the expression of

𝒒 = arg min

{
1

2
∥𝑨𝒙 − 𝒃 ∥2

2
+ 𝑔 (𝒙)

}
.

6 DEBLURRING APPLICATIONS AND RESULTS
We have implemented a simple framework for PSF-based image

deblurring both in Matlab and C++. We have designed a PSF editor

and established a library of PSF to evaluate our solver. We demon-

strate the effectiveness and practicability of our solver for several

visual computing applications using RGB images (with red, green,
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  blind deblurred image estimated PSF image difference (MAE)

Mean Absolute Error
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Fig. 9. Blind Deblurring. Our solver is also capable of performing blind deconvolution to output a blind deblurred image (d) from a single input image (a)
without prior assumption of a ground truth PSF. Prior to the deblurring process, we estimate a non-parametric PSF from a single photography in two steps. We
generate a low-resolution image using blur-aware image down-sampling [Trentacoste et al. 2011] and then we estimate the unknown point spread function
using the sub-pixel estimation method [Delbracio et al. 2012] (b,c). Finally, we use our solver to approximate a sharp image (d) with the estimated PSF. Since
no-reference is existing, The Mean Absolute Error (MAE) between the original input image and the blind deblurred images (e) shows that our solver preserves
desirable depth-of-field backgrounds while it deblurs undesirable blurred foreground near high frequencies.

and blue color components for each individual pixel), height fields,

high dynamic range images (HDR images) and skeletal motion data.

Finally, we show results for blind deconvolution and the blurring

effects on geometry images.

RGB, HDR, Grayscale Images. We solve the color deblurring prob-

lem using our algorithm. We show several restored examples of

RGB images corrupted by a motion blur (see Figures 3 and 4). In

addition, we deblur height fields in the grayscale space and visu-

alize the impact of the deblurring on 3D surface. As seen in Fig-

ure 11, we demonstrate the usefulness for terrain systems. Finally,

we developed an application to filter image in the high dynamic

range [Chaurasiya and Ramakrishnan 2013]. We perform deblurring

in the conventional RGBE space and we show high dynamic range

tone mapping on deblurred HDR images in Figure 12 for various

compression and saturation [Mantiuk et al. 2009].

Geometric and Motion Data. We have developed an application

to blur/deblur in geometry image space [Gu et al. 2002]. In Fig-

ure 10, we render 3D bunny shapes from blurred and deblurred

geometry images using our solver. Our solver is able to undo strong

global blurring geometric shearing around the bunny head region.

However, we observed that a deblurred geometry image leads to

a noisy mesh. Generating a 3D mesh from a deblurred image re-

veals that the noise is perceptually amplified by the sensitiveness of

geometry image meshing step to noise. Inherent to all numerical

solvers, the deconvolution process increases noise, which exists at

all frequencies in the image. To combat noise amplification prevent

excessive artifacts during deblurring, we have enhanced our system

with Graph Laplacian regularization to denoise by smoothing the

error. Finally, we have developed an application to deblur skeletal

motion data, as shown in Figure 13.

7 EVALUATION AND DISCUSSION
Effects of the PSF. We demonstrate our solver’s robustness for non-

Gaussian-like blurriness represented by highly non-uniform PSFs as

seen in the real camera-captured bubble light images (see Figure 3)

and Eiffel Tower images (see Figure 4). We show the effectiveness of

our solver to deblur several typical blur distribution patterns such

as linear, shake, circular and non-linear motion blurs. Our solver

performs accurate deblurring even for images having strong glare

blur or lens flare.

Quality Image Assessment. We perform extensive quality and dis-

tortion image assessment of our numerical solver for the bird, bridge
and sphinx datasets (see Figure 5, Table 1) and for the elephant and
flower datasets (see Figure 6, Table 2). Blurred images are obtained

by corrupting the reference images with a motion blur of size length

21. We show the color-coded SSIM between the reference and de-

blurred images. Error function that measures the distance of the

recovery estimate from the known image information. We use error

functions to measure the distance of the recovery estimate from

the known image information. The Structural Similarity Index Met-

ric (SSIM) accounts for spatial information and is more consistent

with human visual perception than traditional measures (such as

PNSR or MSE). Finally, we provide color-coded visualization for

the Standardized Residual Root Mean Square Error (SRRMSE), the

Normalized Root Mean Square Error (NRMSE), the Peak Signal to

Noise Ratio (PSNR) and Weighted Signal to Noise Ratio (WSNR) at

the first and last iteration of our deblurring solver with respect to

the reference image. In Figure 7, we also provide some intermediate

visual results at different iterations of our solver.

Comparison to Baseline. Figure 1 shows a side-by-side qualitative
and quantitative comparison for the Chameleon image deblurred

by Forward-Backward [Combettes and Wajs 2005; Liu et al. 2012],

Douglas-Rachford [Douglas and Rachford 1956], Viscosity [Imnang

2013; Kitkuan et al. 2019], Richardson [Richardson 1910] and owe
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Fig. 10. Deblurring in Geometry Image Space. Geometry image captures geometry as a simple vertices array of 12-bit [𝑥, 𝑦, 𝑧 ] visualized as [𝑟, 𝑔,𝑏 ]
values and normal-map image of 8-bit

[
𝑛𝑥 , 𝑛𝑦, 𝑛𝑧

]
visualized as [𝑟, 𝑔,𝑏 ]. In our example, we render 3D bunny shapes from original geometry images (a),

blurred geometry images (b) using a simple Gaussian PSF and deblurred geometry images using our solver (c). We observe the so-called noise amplification
inherently injected by any deconvolution process. This amplification is coupled with the sensitivity to noise of geometry image meshing (c). Finally, we combat
the amplification of noise and prevent excessive artifacts during deblurring by applying Graph Laplacian regularization for denoising (d).

plot the evolution of the convergence rate along 20000 iterations

of our solver against this baseline. In Table 1, we compare statistics

of our solver with Forward-Backward [Combettes and Wajs 2005;

Liu et al. 2012], Douglas-Rachford [Douglas and Rachford 1956],

Viscosity [Imnang 2013; Kitkuan et al. 2019], Richardson [Richard-

son 1910]. We provide measurement between deblurred and refer-

ence images for Root Mean Squared Log Error (RMSLE), Normal-

ized Root Mean Square Error (NRMSE), Standardized Residual Root

Mean Square Error (SRRMSE), Single Scale Structural Similarity

(SSIM), Structural Dissimilarity (DSSIM), Universal Quality Index

(UQI), Signal-to-Noise Ratio (SNR), Weighted Signal-to-Noise Ratio

(WSNR), Peak Signal-to-Noise Ratio (PSNR). Our method outper-

forms state-of-the-art proximal methods by producing the most

competitive performance (essentially based on PSNR and RMSLE).

blurred height field

   deblurred height field

blurred height field

   deblurred height field

Fig. 11. Deblurring Height Field.We show a deblurring application in
which a rasterized grayscale heightmap is blurred using Gaussian Point
Spread Function and deblurred using our proposed solver in 2D space (left).
We display side-by-side the corresponding generated blurred/deblurred 2.5D
surface meshes of Mars to demonstrate the usefulness of our numerical
solver to deblur maps for height-field–based terrain systems (right).

More importantly, the steps of alternating direction method of

multipliers (ADMM) [Boyd et al. 2011] are mathematically equiv-

alent to Douglas-Rachford used in our comparison in which our

proposed iterations are performing better in terms of image quality.

Our approach convergences faster while requiring fewer iterations.

Moreover, our proofs had the same level of difficulty as other algo-

rithms in which parameters are chosen in the real line interval (e.g.,

ADMM [Boyd et al. 2011]). Our method is robust to inaccurate PSFs

as seen in the blind deconvolution of floor tile image (see Figure 9)

because the estimated PSF is an approximation. The deconvolution

of HDR images using RGBE representation shows that our solver is

effective in floating-point continuous space. The geometry image is

also an interesting application in whichwe can visualize and observe

the noise amplification inherent to any blurring solver. This noise

amplification on 3D surface can be reduced using Laplacian regu-

larization or by a stopping converge criteria to prevent excessive

artifacts.

Quality and Convergence Error. Finally, we plot in Figures 8 and

7 the PNSR quality and convergence error ∥𝑥𝑛+1 − 𝑥𝑛 ∥ along with
iterations for our solver against the same baseline and the same

dataset to cross-reference qualitative with quantitative evaluation.

Our solver demonstrates constant superiority over the state-of-the-

art since the convergence is the fastest and it requires a smaller

number of iterations than standard methods. The convergence of

our solver is the fastest, and it requires a smaller number of iterations

than standard methods, including the fast proximal gradient meth-

ods (FISTA) [Beck and Teboulle 2009] as shown in Figure 8 on the

rendered Lamborghini. The convergence behavior of our method

is guaranteed by the Cauchy error ∥𝑥𝑛+1 − 𝑥𝑛 ∥. We have estab-

lished theoretical convergence under some suitable conditions with

detailed proof. Our proof demonstrates true convergence, which
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Fig. 12. Deblurring in the RGBE Space. We show a blurred HDR image with a motion blur (a). We provide a 3D surface plot of the corresponding
motion blur PSF along with a color-coded visualization of its profile (a). Next, we perform deblurring in the RGBE space by applying our solver on each
(𝑅,𝐺, 𝐵, 𝐸 ) floating-point channel. Then, we show the consistency of the resulting deblurred HDR by providing high dynamic range tone mapping results
from the deblurred HDR image for various compression and saturation tone mapping (c). Finally, we show the reference and deblurred images side-by-side at
compression 𝑐 = 0.70 and saturation 𝑠 = 1.886 (d).

guarantees the theorem and informs us about choosing of a suitable

initialization for hyperparameters. The convergence to the optimal

solution is guaranteed by the convexity of the cost function used

for the adaptation.
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Fig. 13. Deblurring Skeletal Mocap.We deblur corrupted motion capture
data using 1D Gaussian PSF with our solver. The deblur effect is shown on
the motion curves. We also plot the reference, blurred and deblurred motion
curve for a given joint in which the variation over time for the Euler angle
is displayed as function of sampled keyframes.

Matrix-Vector Operation. We choose matrix-vector operation be-

cause it works better when the image is not large, then the matrix-

vector operation method is more efficient since it does not require a

lot of conversion time. Generally, FFT works better when the im-

age is large. The linear term is split from the proximal update for

the convex regularizer and updates are computed for an inertial

term (applied on an extrapolated estimation of the current iteration),

forward-backward step and a Richardson regularization step.

8 CONCLUSIONS
Our work developed a generalized inertial proximal method, an iter-

ative solver based on forward-backward iterations with a modified

inertial term using proximal operators. This proximal optimization

algorithm is designed to solve the convex deconvolution optimiza-

tions for visual deblurring applications. We generalized iterations to

solve a large variety of constrained minimization problems in image

restoration with wide applicability. The theoretical analysis proves

the convergence property of our algorithm for solving constrained

image restoration problems.

We provides both theoretical and experimental results to demon-

strate the convergence properties of the proposed numerical al-

gorithm. We demonstrated performance against standard forward-

backward methods with an extensive experimental evaluation based

on estimated or known PSFs. Our results show a substantial increase

in PSNR quality compared to other deconvolution methods. Finally,

we illustrated the generality of our numerical approach on a large

spectrum of inputs such as geometry images, HDR image, height

field and skeletal motion capture. At the frontier of pure mathe-

matics and computer vision, we believe that our work represents a

helpful technical tool with wide applicability beyond deblurring. For

future work, we recommend the design of an approach to accelerate

convergence using an automatic adjustment of the step size.
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APPENDIX
Alvarez’s Lemma. Let {𝜓𝑛}, {𝛿𝑛} and {𝛼𝑛} be the sequences in
[0,+∞) such that 𝜓𝑛+1 ≤ 𝜓𝑛 + 𝛼𝑛 (𝜓𝑛 −𝜓𝑛−1) + 𝛿𝑛 for all 𝑛 ≥ 1,∑∞
𝑛=1

𝛿𝑛 < +∞ and there exists a real number𝛼 with 0 ≤ 𝛼𝑛 ≤ 𝛼 < 1

for all 𝑛 ≥ 1. Then, the followings hold [Alvarez and Attouch 2001]:

(i)
∑︁
𝑛≥1

[𝜓𝑛 −𝜓𝑛−1]+ < +∞, where [𝑡]+ = max{𝑡, 0}

(ii) ∃𝜓∗ ∈ [0,+∞) such that lim

𝑛→+∞
𝜓𝑛 =𝜓∗ .

Opial’s condition. A given space X satisfies the Opial’s condition

if when sequence {𝒙𝑛} converges weakly to 𝒙 , then
lim inf

𝑛→∞
∥𝒙𝑛 − 𝒙 ∥ < lim inf

𝑖→∞
∥𝒙𝑛 −𝒚∥

for all 𝒚 ∈ X with 𝒚 ≠ 𝒙 . It is well-known that every Euclidean

space R𝑁 satisfies Opial’s condition.

Proximal Operator. Proximity operators are important tools serv-

ing as basic building blocks of proximal splitting algorithms. The

proximal operator is used to approximate at a given value, without

compromising between the accuracy of the approximation. The
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proximal operator prox𝜆 (𝑥) is defined as follows:

prox𝜆 (𝑥) =

𝑥 + 𝜆 if 𝑥 < −𝜆
0 if − 𝜆 ≤ 𝑥 ≤ 𝜆
𝑥 − 𝜆 if 𝑥 > 𝜆

Given a function 𝑔 (𝑥) admits sub-gradients at 𝑥0. The set of all

sub-gradients is called sub-differential at 𝑥0 and denoted by 𝜕𝑔𝑥0
.

Sub-differential is always convex compact set (see Figure 14).
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Fig. 14. Sub-gradient and Proximity operator

Gaussian Point Spread Function. In this paper, we use a collec-

tion of non-Gaussian and Gaussian point spread functions. As a

simple example (as seen in Figure 15), the Gaussian PSF matrix is a

two-dimensional Gaussian function, where each entry psf (𝑥,𝑦) is
defined as follows:

psf (𝑥,𝑦) = 𝑎 exp

(
−

(
(𝑥 − 𝑥0)2

2𝜎2

𝑥

+ (𝑦 − 𝑦0)2

2𝜎2

𝑦

))
where the coefficient 𝐴 is the amplitude, (𝑥0, 𝑦0) is the center and
𝜎𝑥 , 𝜎𝑦 are the 𝑥 and 𝑦 spreads of the blob. The provided 3D plot

was generated using 𝑎 = 1, 𝑥0 = 0, 𝑦0 = 0, 𝜎𝑥 = 𝜎𝑦 = 1.

Convergence of Iterative Method. The basic idea of any iterative

methods is to construct a sequence of vectors 𝑥 (𝑘 ) integrating the
following property of convergence proof-theoretically:

𝑥 = lim

𝑘→∞
𝑥 (𝑘 )

where 𝑥 is the solution. However, the exact mathematical solu-

tion is not always reachable through the prism of a computational

framework. Then, we introduce a suitable stopping criteria ensuring

convergence of the iterations. To ensure that the iterative process is

stopped at the minimum value of 𝑛 such that

𝑥 (𝑛) − 𝑥 < 𝜖 , where

𝜖 is a fixed tolerance and ∥·∥ is any convenient vector norm.

Fig. 15. Gaussian Point Spread Function

High Dynamic Range Imaging. We develop an application to filter

images in the high dynamic range [Chaurasiya and Ramakrishnan

2013]. We performed deblurring in the RGBE space and then show

high dynamic range tone mapping results of the deblurred HDR

images for various compression and saturation tone mapping [Man-

tiuk et al. 2009]. Red-green-blue components are encoded using

half-precision floating point number. The half-precision float of-

fers flexibility of the floating point numbers. This is well-suited for

encoding linear luminance and radiance values, as they can eas-

ily encompass large dynamic range. RGBE OpenEXR format. The

RGBE pixel encoding is used in the radiance file format (32-bit per

pixel RGBE encoding). The RGBE pixel encoding represents colors

using four bytes. The first three bytes encode red, green, blue color

channels and the last byte is a common exponent for all channels.

RGBE is essentially a custom floating point representation of pixel

values, which uses 8 bits to represent exponent and another 8 bits

to represent mantissa. The RGBE encoding takes advantage of the

strong correlation of color channels in the RGB color spaces and

their values are at least of the same order of magnitude. Therefore,

there is no need to store a separate exponent for each color channel.

The conversion from (𝑅,𝐺, 𝐵, 𝐸) bytes to red, green and blue

trichromatic color values (𝑟, 𝑔, 𝑏) is done using the formulas:

(𝑟, 𝑔, 𝑏) =
{ (
(𝑅,𝐺,𝐵)+0.5

256

)
· 2𝐸−128

(
exposure

𝐸𝑤

)
if 𝐸 ≠ 0

(0, 0, 0) if 𝐸 = 0

where exposure parameter (one for the entire image) can be used

to adjust absolute values and 𝐸𝑤 is the efficacy of the white con-

stant equal to 179. Both these terms are used in the Radiance file

format but are often emitted in other implementations. The inverse

transformation is given by:

𝐸 =

{ ⌈
log

2
(max {𝑟, 𝑔, 𝑏}) + 128

⌉
if (𝑟, 𝑔, 𝑏) ≠ 0

0 if (𝑟, 𝑔, 𝑏) = 0
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(𝑅,𝐺, 𝐵) =
⌊

256 (𝑟, 𝑔, 𝑏)
2
𝐸−128

⌋
where ⌈·⌉ denotes rounding up to the nearest integer and ⌊·⌋ round-
ing down to the nearest integer. The limitation of the RGBE encoding

is the impossibility of representing highly saturated colors. Color

components become negative when highly saturated colors are con-

verted to the RGB color space. Some color information can be lost

since the RGBE format can contain negative values. To solve this

problem, the radiance format can also encode pixels in the CIE XYZ

color space using XYZE encoding. Such encoding is analogous to

RGBE, except that CIE XYZ color primaries are used.

Skeletal Motion Data. We develop an application to deblur skeletal

motion data as shown in Figure 13. We assume motion capture data

have the standard skeletal format of 𝑛 bones and 𝑘 frames. A vector

of parameters represents each frame.

M (𝑡) = (𝒑𝑅 (𝑡) , 𝒒0 (𝑡) , · · · , 𝒒𝑛 (𝑡) , 𝒐0 (𝑡) , · · · , 𝒐𝑛 (𝑡))
where 𝒑𝑅 is a 3-vector indicating the root position in world coordi-

nates, 𝒒𝑖 is the quaternion specifying the orientation of the 𝑖𝑡ℎ joint

in its parent’s coordinate system, and 𝒐𝑖 is a 3-vector defining the
offset of the 𝑖𝑡ℎ joint in its parent’s coordinate system. Using a linear

indexing, the 𝑗 th frame’s vector is denoted by 𝐹 𝑗 . A motion is a con-

tinuous function𝑀 (𝑡) regularly sampled into frames 𝐹 𝑗 =𝑀
(
𝑡 𝑗

)
,

where each frame is a skeletal pose defined by its joint orientations

and the position of the root joint. We cast the motion deblurring

problem as a 1D signal restoration problem by considering a 1D

convolution for an input signal 𝑓 [𝑘] separately for each joint. Then,

the 𝑘 × 𝑘 blurring matrix 𝐴 is directly the Toeplitz matrix. For cir-

cular convolution, the Toeplitz is constant along the diagonals. In

1D, the entries

{
𝑎𝑖 𝑗

}
of 𝐴 are related to the PSF K as follows:

𝑎𝑖 𝑗 =K [(𝑖 − 𝑗) mod 𝑘] , ∀𝑖, 𝑗 ∈ [1 · · ·𝑘]
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